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Redundancy in a message can be thought of as  consisting of contextual redundancy and
alphabetic redundancy.  The first is illustrated by the fact that the letter Q is nearly always
followed by the letter U, the second by the fact that the letter E is far more common than the letter
X. Range encoding is an algorithm for removing both sorts of redundancy.


Since Huffman  [1]  published his paper in 1952 there has been a number of papers, e.g. [2],
describing techniques for removing alphabetical redundancy,  mostly generating prefix codes, and
mostly transforming the messages into a bit string.  The usual aim of such techniques is to reduce
the quantity of storage required to hold a message.


In the last fifteen years the growth of telemetry has increased interest in techniques for removing
contextual redundancy.  Many of these techniques approximate the message, rather than simply
remove redundancy.  Such techniques are often analog, and include transmitting the difference
between a measured signal and a prediction of that measurement, or varying the rate at which a
value is sampled according to the recent measurements of that value [3,4].  The output of such
techniques may be a signal of generally low amplitude, or an intermittent signal ;  the usual aim
being to decrease the power consumed by a transmitter, or to reduce the risk of a circuit or
recording medium being overloaded.


Many techniques are almost optimal in a wide variety of situations, but none are universally
applicable.  In contrast, range encoding may be used to remove all the redundancy that we can
describe in any digitised message.  It can produce encodings to any base.


Nomenclature


We shall consider an uncoded or decoded message as a string of letters drawn from an alphabet,
and an encoded message as a string of digits to a given base, thus it will be obvious whether we
are talking about an encoded message or an uncoded one.  We shall require the probability of a
given letter occuring in any given context to be described by a frequency algorithm.


We shall illustrate our algorithm by encoding and decoding a message composed of letters drawn
from the alphabet {K,L,M,N}, and forming an encoded string of digits to base ten.
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Range encoding
If we say that a storage medium has a width of s, or a width of d digits of base b, we mean that it can take
one of s, or one of bd, different values.  If we do not specify that the width is in digits, then we are using
absolute numbers.  If we store a letter in the storage medium and so restrict the medium to taking one of t
different values, then the width of the encoding of the letter is s/t, and the remaining width is t, in which we
can store a remainder of width t.  The set of t different values that can represent the letter is the range of the
letter in the width of storage. For example, if the range of a letter in a byte of storage of width 256 is
(n|240 ≤ n<250) then the width of the letter is 25.6, and the remaining width is 10.  We can store as
remainder anything that we could store in a decimal digit.


We have assumed that we can treat the value of  storage as a number: the mapping of the s possible values
of storage onto the integers from 0 to s-1 is usually natural.  Let us write (n|B ≤ n<T) as [B,T).  If a range
has the form [B,T) ,then we can combine it with a remainder by simple arithmetic.  Thus if i ∈[0,T-B) is to
be stored as remainder to [B,T) then the storage takes the value B+i ; or if [i , j) ⊆ [0,T-B) is stored as
partial remainder to [B,T), then the storage is constrained to [B+i,B+j).


Let fa be the probability of the letter ‘a’ occurring in any given context.  We assume our alphabet to be
ordered and define Fa to be the probability of a letter preceding ‘a’ in the alphabet occuring in the same
context, thus:


Fa = ∑
<ax


fx


Shannon [via 5] showed that to minimise the expected number of digits to base b required to represent a
message, we should encode each letter ‘a’ so that its width is -logb (fa) digits, i.e. its absolute width is 1/fa.
We can not necessarilly manage this exactly, but if we let the encoding of ‘a’ in storage of width s be
[ s.Fa , s(fa + Fa) )  then the width of the letter approaches 1/fa very closely for s.fa>>1.  Observe that
provided for all ‘a’ s.fa ≥ 1, then each letter is encodable and unambiguously decodable.


Note that we write fa and Fa  rather than the more conventional f(a) and F(a), and that in future we shall
simply write sfa rather than s.fa.


Decoding
A letter ’a’ together with its remainder will encode in storage of width s as i ⊆ [aFa , s(Fa + fa) ). Let L
be the last letter e in the alphabet for which Fe<j.  We can use L to deduce ‘a’ given i, for :


     sFa ≤  i <  s (Fa + fa)


∴   sFa< i+1≤ s(Fa+fa)


∴   Fa <  i +1 ≤  Fa+fa
     s


)
1


(
s


i
La


+
=∴
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However we must take account of rounding errors in the calculations of  i +1.
      s


We can always verify the  letter, and correct it if necessary by confirming the top line above, namely:


     sFa ≤ i <  s( Fa + fa)


Having deduced ‘a’ the remainder is i - sFa , and was encoded in a width of   s( Fa + fa) -  sFa  .


A basic algorithm


Let Ai be the i’th letter of a message that we wish to encode, 1 ≤ i ≤ k.  Imagine we choose some large
storage of width s into which to code A1, leaving a remaining width of R1 in which we code A2, leaving a
remaining width of R2 in which we code A3, and so on.  The widths are given by


R(0) = s ,  Ri =  R (i – 1) (FAi + fAi) - R(i – 1)FAi


Then if Bj = ∑
=


j


i 1


 R(i –1) FAi , the range of the  complete message in the storage of width s would be


                           [Bk,Bk+Rk).


Figure 1 illustrates such an encoding, the message ‘NMLNNNKKNML’ encoding in storage of width 1011


as the range [74360239870,74360281886).  If we choose a number in the middle of this range, then we
need only store or transmit the leading seven digits, since whatever the trailing four digits are taken to be,
the number stays in range.  Thus our message encodes as ‘7436026’.


In fact if an encoding leaves a remaining width of r then at least the trailing logb(r / 2)  digits are
insignificant, b being the base of the encoding (at most the trailing logb rdigits are insignificant ).


A revised algorithm.


The length of the message that can be encoded using the basic algorithm is limited by the size of integer
that the encoder can manipulate.  We shall now revise the algorithm to remove this limitation.


If a letter ‘a’ encodes in storage of width s as [B,T) the remaining width is T-B.  If T-B is too small for our
purpose, then by adding a trailing digit (base b) of storage the range of storage becomes [Bb,Tb), and the
remaining width becomes (T-B)b.  Note that when decoding ‘a’ we must ignore this extra digit, since the
encoding of ‘a’ in storage of width sb is not necessarily [Bb,Tb).


Let s=bw where w is the largest whole number of digits base b that our encoder can conveniently handle.
We shall encode the first letter of a message in storage of width s, and we shall then add as many trailing
digits of storage as we may without causing the remaining width to exceed s.  Let the storage after
encoding the i’th  letter be of width Si and
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Figure 1                                                                                          Range encoding in wide storage   


This figure illustrates how we could encode a short message in storage of width 1011.  The first letter is
encoded as a range in the whole storage, then each subsequent letter is encoded in the remaining width of
the encoding so far.


The frequency algorithms f and F are represented by the following table.


a    fa    Fa
K 0.1 0


L 0.21 0.1


M 0.27 0.31


N 0.42 0.58


The message to be encoded is ‘NMLNNNKKNML’


Remaining
 Width


Next
letter


Range of next
      letter


Message  so
         far


  Range of
message  so   far


 100000000000 N [58000000000 , N [58000000000 ,
100000000000) 100000000000)


 42000000000 M [13020000000, NM [71020000000,
 24360000000)  82360000000)


11340000000 L [01134000000, NML [72154000000,
 03515400000)  74535400000)


02381400000 N [01381212000, NMLN [73535212000,
 02381400000)  74535400000)


01000188000 N [00580109040, NMLNN [74115321040,
 01000188000)  74535400000)


00420078960 N [00243645796, NMLNNN [74358966836,
 00420078960)  74535400000)


00176433164 K [00000000000, NMLNNNK [74358966836,
 00017643316)  74376610152)


00017643316 K [00000000000, NMLNNNKK [74358966836,
 00001764331)  74360731167)


00001764331 N [00001023311, NMLNNNKKN [74359990147,
 00001764331)  74360731167)


00000741020 M [00000229716, NMLNNNKKNM [74360219863,
 00000429791)  74360419938)


00000200075 L [00000020007, NMLNNNKKNML [74360239870,
 00000062023)  74360281886)


The complete code must be quoted to seven significant digits,
e.g. 7436026
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of value [Bi, Ti) ; then we shall encode the next letter A(i+1) in storage of width R(i+1) where:


         R (i+1) = (Ti-Bi)bk(i+1)


          k (i+1) = w- logb (Ti - Bi)


Thus for any i>0


      [Bi ,Ti) = [B(i-1)bki  + RiFAi , B(i - 1) bki + Ri(FAi + fAi) )


and


     Si= ∑
=


i


j 1


kj digits.


where,
[B0,T0) = [0,1)


An example will make this algorithm more obvious.  Figure 2 shows our sample message being encoded
with s = 1000.


Implementation


Consider the range [B,T) of storage immediately before a further letter is added in, and let s be the upper
bound of T-B.  Observe that we can identify three (possibly empty) zones within the digits that compose
any number in the range; for example if s = 1000 then [B,T) might be


[1319314 ,
 1320105 ]


     zone    1  2   3
Remember that T-1, not T, is the highest number in the range.


Zone 1 consists of digits that are common to every number in the range, and thus are unaffected by the
choice of remainder.  These digits may be committed to the transmitter or to storage.


Zone 2 consists of n digits forming a number dbn-1 or dbn-1 - 1, where d is a single digit and b is the base
of the encoding.  In our example n=2 and d=2.  Zone 2 is the digit that may be affected by the choice of
remainder, but which are not required in order to distinguish between two numbers in the range.  We shall
call these the delayed digits, and (d,n) identifies the possible values of the delayed digits. By convention, if
n=0 then d=0.


Zone 3 consists of the rightmost w digits, and is sufficient to distinguish between any two numbers from
the range.


Consider the range [B’,T’ ), with committed digits c, and delayed digits represented by (d , n).  Let x be the
committed digits after resolving the delay high, i.e.


             x = cbn + dbn-1







                                                                                                                                                            6


Figure 2                     Range encoding in narrow storage


Here we re-encode the message ‘NMLNNNKKNML’ using the same frequency
algorithm as in  figure 1,               but using an encoding algorithm that
encodes individual letters in storage of width less than 1000.


Adjusted
remainingwidth


Next
letter


Range of
next letter


Message so
far


Range of message
so far


    Remaining
     width


1000 N [580 ,
1000)


N [580 ,
1000)


420


420 M [130 ,
 243 )


NM [710 ,
  823)


113


113 L [011 ,
 035 )


NML [721 ,
 745 )


24


240 N [139 ,
 240 )


NMLN [7349 ,
  “450 )


101


101 N [058 ,
 101 )


NMLNN [7407 ,
  “450 )


43


430 N [249 ,
 430 )


NMLNNN [74319 ,
  “”500 )


181


181 K [000 ,
 018 )


NMLNNNK [74319 ,
  “”337 )


18


180 K [000 ,
 018 )


NMLNNNKK [743190 ,
  “””208 )


18


180 N [104 ,
 180 )


NMLNNNKKN [7432004 ,
  “”””080 )


76


760 M [235 ,
 440 )


NMLNNNKKNM [74320275 ,
  “””””480 )


205


205 L [020 ,
 063 )


NMLNNNKKNML [74320295 ,
  “””””338 )


43


The complete code must be quoted to seven significant digits,
e.g. 7432031.
---------------------------------------------------------------------------------------------------------------------------------


then we shall express [B’,T’] as


      c,(d,n),[B,T]


where B=B’-xs, and T=T’-xs.   For example, [1319314,1320105) becomes   13,(2,2),[-686,105).
 The  remaining width is T-B and if we combine   c,(d,n),[B,T] with the partial remainder [i,j) ⊆ [0,T-B]
then we create the range c,(d,n),[B+i, B+j].
If B+j ≤ 0 then we may resolve the delay low: if B+i ≥ 0 then we may resolve the delay high.
Figure 3 shows all the interesting possibilities that can arise.
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Figure 3                                                                                     Illustrating c,(d,n),[B,T] + [i,j]


This shows the effect of encoding a letter as partial remainder to the range 13,(2,2),[-686,105], and
adjusting the resulting range so that the remaining width is as high as possible without exceeding 1000.


Case  1.     The letter encodes in storage width 791 as [000,080)


                    13,(2,2),[-686,105) + [000,080) ⇒13,(2,2),[-686,-606)
                   ⇒ 1319,(0,0), [314,394) ⇒ 13193, (0,0), [140,940)


Case   2.     The letter encodes in storage width 791 as [620,700)


                   13,(2,2), [-686,105)  +  [620,700) ⇒ 13,(2,2), [-066,014)
                    ⇒  13,(2,3), [-660,140)


Case  3.   The letter encode in storage width 791 as [700,791)


                 13,(2,2), [-686,105) + [700,791)  ⇒   13,(2,2),[014,105)
                  ⇒ 1320,(0,0) , [014,105) ⇒ 1320,(1,1), [-860,050)


--------------------------------------------------------------------------------------------------------------------------------
We have now reduced the ranges to a form that we can implement easily
 since if the range is c,(d,n),[B,T) then :


         -s<B<T ≤ +s


         d is a single digit


         n is a small integer


         c need not be held in the encoder/decoder.


We have one further refinement before our algorithm is complete.  It is most unlikely that the number of
delayed digits will ever grow very large, but we may wish to impose an upper limit, One way in which we
may force resolution of the delay is to reduce the top of the range, or to increase the bottom of the range.
Thus, for example,


      13,(2,3),[-660,140) ⇒ 13,(2,3), [-660,000) ⇒ 13199,(0,0), [340,1000)
or


      13,(2,3), [-140,660) ⇒ 13,(2,3),[000,660) ⇒ 13200,(0,0), [000,660)


This wastes at most one bit of storage.
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Observations


Sort order : The sort order of encoded messages is the same as the sort order implied for uncoded  messages
by the alphabetic order chosen in the implementation of the frequency algorithms.  In [2] this is called the
strong alphabetic property.


Prefix codes :  Prefix encoding (e.g. Huffman encoding) is the most popular encoding for removing
alphabetic redundancy,  so it is pleasing to find that any prefix encoding can be generated or read using the
range encoding algorithm that we have developed.


Consider a message encoded using a prefix encoding, where any letter ‘a’ encodes to a string of digits of
length ua and numerical value va.  The same message will encode to the same encoding using the range
encoding algorithm if we define  Fa=b-uava  and   fa=b-ua for all ‘a’, where b is the base of both
encodings.


The corollary is that any messages encoded in a single context will form an encoding that can be treated as
a prefix encoding if for all ‘a’, fa is a power of b and Fa/fa is an integer.


Recognising end of message :  The decoder is driven by whatever wants the message, and it is the
responsibility of the driver to recognise the end of a message.  If the driver continues to ask for letters after
the end of a message, it will get spurious letters.    If the message is not self delimiting we must add a letter
‘end -of-message’ to the alphabet.


Context
Since f and F map letters in context to probabilities, we should properly talk about fca, Fca, and Lca, where
fca is the probability of encountering the letter ‘a’ in context c, and similarly for F and L.  In our example
up till now there has been only one context; we shall now derive F and L for an example involving several
contexts.


In 1952 Oliver modelled [5] a typical television signal as drawn from an alphabet of m levels, where each
letter had probability pkn of differing from the previous letter by n  levels in either direction, where k<1,
and p is a function of the previous letter.


Each level is encoded in the context of the preceeding level, and it can be shown that :


     Fca  =   x+1-ka-c             if c≤a
                    x+y


                  k-ka+1            if  c>a
                    x+y


    where   x=k-kc+1       and     y=1-km-c
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This can easily be implemented if the encoder holds a list of the values of  ki for 0 ≤ ≤i m.


Lcj is the highest letter ‘a’ for which Fca<j,    i.e. the highest such that :


       ka-c>1+x(1-j)-yj             if c≤a
        ka+1>k-(x+y)j                 if c>a
Thus L too can easily be implemented given a list of the values of  ki for 0 ≤ ≤i m.


The context of improbable letters


s reflects the largest integer that our encoder is built to handle, and until now we have assumed that
frequency algorithm f can only be used with an encoder parameterised by s if for all contexts c and letters
’a’,  s/b≥1/fca, or fca=0.  By fca = 0 we mean that letter ‘a’ is truely impossible in context c.  We shall
now consider how we can simply transform any f, F and L so that they meet this constraint.


Consider a context x where r is the width in which we must encode the next letter.  The range of the letter is
[rFxa  , r(Fxa+fxa)). If this range is null, i.e. rFxa = r(Fxa + fxa) , then we cannot encode the
letter ‘a’.  When we encounter such a range, then we will steal one value from the next non-null range
above, namely rFxa , to represent the context marker Cy, which marks the fact that the next letter is
coded in the context y.  The range of Cy is [ rFxa , r(Fxa + fxa) ).


Now all letters e such that rFxe = rFxa will result in the generation of Cy, except perhaps the highest
such letter.  We shall identify the range of letters that do as [α,β)  where α is the lowest such letter, and β
is next letter above the highest such letter.


Let us consider a letter ‘a’ for which the range is not null, i.e.rFxa < r(Fxa +fxa) .  If the next possible
letter below ‘a’ causes the generation of any context marker Cz, then the range of ‘a’ is reduced to
[ rFxa , r(Fxa + fxa)  ) , since the value rFxa is stolen to represent Cz.  If this reduced range is null,
i.e.rFxa = r(Fxa + fxa)  , then letter ‘a’ must also generate context marker Cz.


Thus the range of letters  [α,β) that generate the context marker Cy is all those letters whose range is
included in the range of Cy.


γε[α,β)    ⇔    [ rFxγ , r(Fxγ+fxγ) )   ⊆  [ rFxα ,  r(Fxα+fxα)  )


The context y is a context of improbable letters in which we encode the letter that caused the generation of
the context marker Cy.
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F and f are  defined in the context y by:


a ε [α,β]       à  Fya = (Fxa - Fxα)/ (Fxβ - Fxα)


                              fya = fxa /(Fxβ - Fxα)


If we can calculate Fxa - Fxe directly as a floating point number, where ‘a’ and e are any two letters, then
we do not have to work in double precision even when encoding improbable letters.  This process may be
repeated to any depth, and thus we may (for example) perform any encoding on an eight bit micro
processor.


Note that the algorithm still generates prefix codes if for all ‘a’, fa is a power of the base, and  Fa/fa  is an
integer.


Conclusion


We are now able to separate the task of describing redundancy from the task of removing it. If we can
describe it concisely, we can remove it cheaply.


For the sake of brevity, we merely state that messages encoded using range encoding will have an average
length little more than 0.5logb(2b) digits longer than the theoretical optimum.  This paper will also be
published as a University of Warwick Theory of Computation report, where we shall justify that statement ,
and include an APL model of a range encoder and decoder.
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Post script


Since writing this report,  two papers by J.  J.  Rissanen have been brought to my notice [6,7].  The ideas in
those papers and in this appear to be closely related, and it will be interesting to  compare them in detail.
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